

b Obtain the image of the infinite strip x = 0 and $x = \frac{\pi}{4}$ under the 6 M transformation $w = \cos z$.

UNIT-III

5 Find an iterative formula for \sqrt{N} (where *N* is a positive number) by Newton- 12 M Raphson method and hence compute the real root of $\sqrt{24}$.

OR

6 a Compute the value of f(x) when x=1.4 from the given table of values. 6 M **x 1.1 1.3 1.5 1.7 1.9**

	X	1.1	1.3	1.5	1./	1.9
	f(x)	0.21	0.69	1.25	1.89	2.61
by using Newton'	s forwa	rd interp	olation	formula	a.	

b Find the second degree polynomial equation P(x) for an unequal interval data 6 M P(1)=1, P(3)=27 and P(4)=64 by using Lagrange's interpolation formula.

Q.P. Code: 16HS612

UNIT-IV

7 **a** Fit the curve of the form $y = ae^{bx}$ for the given data 7 M

b Using Simpson's
$$\frac{3}{8}$$
 rule to evaluate the value of $\int_{0}^{6} \frac{1}{1+x^2} dx$ 5 M

OR

8 a Fit a second-degree polynomial to the following data by the method of least 5 M squares

X	0	1	2	3	4
у	1	5	10	22	38

- **b** Evaluate $\int_{0}^{2} e^{-x^{2}} dx$ taking h = 0.25 by using Simpson's $\frac{1}{3}$ rule 7 M
- 9 a Solve y' = x + y, with y(1) = 0 by using Taylor's series method and calculate the 6 M values of y(1.1) and y(1.2).
 - **b** Calculate the values of y(0.1) and y(0.2). Given that y'=1+xy, with y(0)=1 6 M using Picard's method.

OR

- **10** a Solve $y' = y^2 + x$ with initial y(0) = 1 numerically by using Euler's method and 6 M also compute the values of y(0.1) and y(0.2).
 - **b** Write Runge-Kutta 4th order formulae and use it to evaluate y(0.1) and y(0.2) given 6 M $y' = x^2 y$, with initial condition y(0) = 1.

*** END ***